Botulinum Toxin for Hyperhidrosis
A Review

Alexander Grunfeld,¹ Christian A. Murray² and Nowell Solish²
1 Faculty of Medicine, University of Toronto, Women's College Hospital, Toronto, Ontario, Canada
2 Division of Dermatology, University of Toronto, Women's College Hospital, Toronto, Ontario, Canada

Contents

Abstract ... 87
1. Definition and Etiology of Hyperhidrosis (HH) ... 88
2. Epidemiology .. 88
3. Burden of Disease .. 89
4. Pathophysiology .. 89
5. Diagnostic Approach .. 89
6. Management of Primary Focal HH ... 90
 6.1 Botulinum Toxin .. 92
 6.1.1 Axillary HH ... 93
 6.1.2 Palmar HH ... 95
 6.1.3 Plantar HH .. 95
 6.1.4 Craniofacial HH .. 96
 6.1.5 Other Types of Focal HH ... 96
 6.1.6 General Considerations ... 96
7. Botulinum Toxin injection Tips ... 96
 7.1 Minor's iodine-Starch Test .. 96
 7.2 Anesthesia ... 97
 7.2.1 Alternatives and Adjuncts .. 97
 7.3 Dilution and Injection .. 97
 7.3.1 General instructions ... 97
 7.3.2 Axillary HH ... 98
 7.3.3 Palmar and Plantar HH ... 98
 7.3.4 Craniofacial HH ... 98
8. Conclusion .. 98

Abstract

Primary focal hyperhidrosis is a disorder of idiopathic excessive sweating that typically affects the axillae, palms, soles, and face. The disorder, which affects up to 2.8% of the US population, is associated with considerable physical, psychosocial, and occupational impairments. Current therapeutic strategies include topical aluminum salts, tap-water iontophoresis, oral anticholinergic agents, local surgical approaches, and sympathectomies. These treatments, however, have been limited by a relatively high incidence of adverse effects and complications. Non-surgical treatment complications are typically transient, whereas those of surgical therapies may be permanent and significant. Recently, considerable evidence suggests that botulinum toxin type A (BTX-A) injections into hyperhidrotic areas can considerably reduce focal sweating in multiple areas without major adverse effects. BTX-A has therefore shown promise as a potential replacement for more invasive treatments after topical aluminum salts have failed. This article reviews the
epidemiology, diagnosis, and management of primary focal hyperhidrosis, with an emphasis on recent research evidence supporting the use of BTX-A injections for this indication.

1. Definition and Etiology of Hyperhidrosis (HH)

Hyperhidrosis (HH) is a disorder of excessive sweating out of proportion with thermoregulatory requirements. Patients sweat excessively mostly in response to emotional and thermal stimuli, but also in response to other triggers (e.g. fine manual tasks, exercise) and occasionally even spontaneously.\(^1,2\) Since no standardized definition of 'excessive' sweating exists, clinicians typically base their diagnosis in part on subjective measures that estimate how HH affects a patient’s quality of life (QOL). In practice, sweating is excessive or abnormal if it significantly interferes with daily life.

HH can be classified as either focal or generalized (table I). Focal HH involves excessive sweating in a typically bilateral and symmetric distribution, although it may present unilaterally.\(^3,4\) The axillae, palms, soles, and face are most commonly affected.\(^5,6\) Generalized HH, in contrast, affects the entire body. A further distinction can be made between primary and secondary HH. Primary or idiopathic HH is of unknown etiology and almost invariably presents as focal HH. Secondary HH, a detailed discussion of which is beyond the scope of this article, may be due to a wide variety of disorders, including endocrine, metabolic, neurologic, toxic, neoplastic, infectious, or cardiorespiratory conditions.\(^7-10\) Secondary HH most often manifests as generalized HH, but can also present in a localized, focal pattern. In the context of this article, the term focal HH will nevertheless be used to imply primary focal HH.

2. Epidemiology

Primary focal HH is not a rare condition, as it affects up to 2.8% of the US population, a prevalence comparable to that of psoriasis.\(^6,12\) Although the condition affects men and women equally, women are more likely to seek medical attention for their symptoms.\(^5,6\) Even so, nearly two-thirds of individuals with focal HH do not consult their physician about their condition,\(^6\) presumably because of either social embarrassment or a lack of awareness that they have a treatable medical condition. As a result, the majority of individuals with focal HH are undiagnosed and untreated.

Primary focal HH most commonly affects individuals aged 25–64 years.\(^6\) The average age of onset is 25 years, but this varies depending on the body area affected.\(^4,6\) Palmar HH tends to begin in childhood and early adolescence,\(^5,13\) whereas axillary HH tends to have a post-pubertal onset.\(^4-6,13\) The natural history of focal HH is uncertain, but some evidence suggests spontaneous regression over time, given the low prevalence of the disorder among the elderly.\(^5,6\)

The axillae (51%), soles (30%), palms (24%), and face (10%) are most commonly affected in focal HH.\(^5,6\) Additional areas

<table>
<thead>
<tr>
<th>Table 1. Examples of causes of generalized and focal hyperhidrosis(^7,9,11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalized hyperhidrosis</td>
</tr>
<tr>
<td>Endocrine and metabolic</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respiratory failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal hyperhidrosis</td>
</tr>
<tr>
<td>Primary idiopathic</td>
</tr>
<tr>
<td>Axillary</td>
</tr>
<tr>
<td>Palmar</td>
</tr>
<tr>
<td>Plantar</td>
</tr>
<tr>
<td>Craniofacial</td>
</tr>
<tr>
<td>Frey syndrome</td>
</tr>
<tr>
<td>Citric acid</td>
</tr>
<tr>
<td>Coffee</td>
</tr>
<tr>
<td>Chocolate</td>
</tr>
<tr>
<td>Peanut butter</td>
</tr>
<tr>
<td>Spicy food</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associated with neuropathies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary to spinal disease/injury</td>
</tr>
</tbody>
</table>
such as the back, chest, abdomen, forearm, genitals, and lower extremities can also be involved.[5] Patients often note more than one area of excessive sweating; 81.4% of patients with axillary HH, for instance, experience excessive sweating in other areas.[6] Focal HH is generally described as a symmetric phenomenon, but it may be unilateral in 21% and 6-9% of cases of axillary and palmar HH, respectively.[4] A unilateral presentation, although less common, should therefore not be taken as strong evidence against a diagnosis of primary focal HH.

Studies have repeatedly discovered a strong family history of focal HH among individuals with this condition, with most estimates of affected family members ranging from 30% to 50%.[14] Both early onset[5,13] and axillary involvement[4,15] are associated with a stronger family history. The inheritance of focal HH is likely autosomal dominant with variable penetrance and expressivity.[16] Based on calculations of allelic probability, a child born to a parent with palmar HH has a 25% chance of also developing the disorder.[16]

3. Burden of Disease

Focal HH may lead to a wide range of secondary medical conditions, such as bacterial or fungal overgrowth,[7,17,18] muscle cramps,[19] eczematous dermatitis,[17,20-23] and additional dermatologic conditions.[24] As well as anxiety and other psychological disturbances.[24,6,7,18,25-27] Most important to patients, however, is the effect that HH has on their QOL and psychosocial wellbeing. Several studies using validated QOL measures suggest that HH is associated with impairments in QOL comparable to those associated with severe psoriasis or dermatitis/eczema as well as severe chronic disease states such as end-stage renal disease, rheumatoid arthritis, and multiple sclerosis.[4,28-30]

All patients with HH experience some degree of physical discomfort, psychosocial impairment, and functional disruption as a consequence of their sweating.[2,4,6,7,25-28,30-34] Despite these negative consequences, up to 62% of patients do not even realize that they have a medical condition and may consequently blame themselves.[8]

4. Pathophysiology

Human skin has approximately 2–4 million sweat glands, of which there are two functionally distinct types: eccrine and apocrine.[35,36] Apocrine glands, found predominantly in the groin and axillae, are not thought to play a significant role in HH. Eccrine glands, which are the most numerous, are distributed in the deep dermis over almost the entire body. They are especially concentrated on the soles, forehead, axillae, palms, and cheeks.[37] On the palms, they are the only sweat gland present. Eccrine glands produce a thin, odorless solution hypotonic to plasma that gives rise to HH if secreted in excess. Eccrine glands are important in thermoregulation, yet they also respond to gustatory and emotional stimuli, such as stress, anxiety, fear, and pain.[35,36] They are innervated by postganglionic sympathetic cholinergic fibers, but also respond to adrenergic stimuli, albeit to a lesser extent.[35]

According to histologic studies, neither the number, density, nor size of eccrine glands is increased among individuals with HH.[38] Recent data on the ultrastructure of hyperhidrotic eccrine glands suggest that these glands are not morphologically abnormal, but purely hyperactive.[39] HH therefore is likely due to neurogenic overactivity of otherwise normal eccrine glands in the affected area.[40,41] Some evidence suggests that this increased sympathetic activity may occur at the upper dorsal sympathetic ganglia T2 and T3.[42,43] The pathophysiology of focal HH is poorly understood, but likely involves a complex autonomic and regulatory dysfunction in both the sympathetic[43,44] and parasympathetic pathways. Evidence suggests that hyperexcitability of the somato-sympathetic reflex circuits involved in eccrine secretion may account for the apparent neurogenic overactivity.[40]

5. Diagnostic Approach

The Multi-Specialty Working Group on the Recognition, Diagnosis, and Treatment of Primary HH recommends that primary focal HH should be diagnosed when “focal, visible, excessive sweating of at least 6 months duration” is present without apparent cause in conjunction with at least two of the following six criteria:[46]

- bilateral and relatively symmetric distribution;
- impairment of daily activities;
- frequency of at least one episode per week;
- age of onset <25 years;
- positive family history;
- cessation of focal sweating during sleep.

The patient history and examination should focus on the pattern of sweating (location, duration, frequency, volume, symmetry, specific triggers, and nocturnal sweating), age of onset, impact on QOL, family history, and any suggestion of a secondary etiology.[11,46,47] The review of systems will assist in ruling out potential secondary causes of HH and in documenting any contraindications to therapy.[41,46] In the absence of a secondary etiology, laboratory tests generally are not needed. Further components of the work-up of a hyperhidrotic patient should include evaluation of the severity of sweating, the impairment of daily activities, and the distribution of HH.

Both quantitative and subjective means of assessing the severity of sweating among hyperhidrotic patients exist. Although no standardized definition of focal HH exists, normal sweating
may be defined quantitatively as <1 mL/m²/min of eccrine sweat production at rest and at room temperature.[35] Although quantitative measures such as gravimetry are often used in research settings, their use is not practical in clinical settings. Compared with quantitative measures, subjective ratings such as visual analog scales actually have a relatively high level of diagnostic sensitivity and specificity.[48,49]

Since the diagnosis of focal HH requires impairment of daily activities,[46] clinicians should attempt to assess QOL in patients with excessive sweating. Although formalized assessment tests are not required in routine clinical practice, the four-item Hyperhidrosis Disease Severity Scale (HDSS)[25,32,30,51] [see table II] may help clinicians quickly determine the level of interference with daily activities caused by HH.[47] Treatment guidelines have also used HDSS scores to stratify the management of patients with focal HH according to disease severity.[6,46]

Once the diagnosis of primary focal HH has been made, semiquantitative techniques may prove useful in determining the precise pattern of sweating and in monitoring the effectiveness of treatment over time.[52,53] A Minor’s iodine-starch test is most commonly used for this purpose (figure 1). This test can be used to map the area of excess sweating prior to initiating local treatments with botulinum toxin or surgery, but does not provide accurate information on the quantity of sweat produced.[26,41,54-56]

6. Management of Primary Focal HH

Treatment for primary focal HH aims to reduce the level of sweat secreted to a level that is acceptable to the patient. Rather than striving to decrease sweat production by a predetermined percentage, the ultimate goal of treatment is to improve the patient’s QOL, which can be readily assessed in clinical settings using the HDSS. For individuals with severe HH (HDSS 3-4), treatment success is defined as a 1- to 2-point reduction in an HDSS score to 2 or less. Treatment success in patients with mild or moderate HH (HDSS 1-2) involves a reduction of at least 1 point on the HDSS. Treatment failure entails either no change in HDSS scores after 1 month of therapy or an intolerability of the treatment or its adverse effects. In the absence of intolerability, options for treatment failure include repeating the treatment once (e.g. botulinum toxin type A [BTX-A] injections), or switching or combining therapies.

The many available treatment modalities can be categorized as either conservative (table III) or surgical (table IV). These options vary in their efficacy, adverse effects, cost, and duration of effect.[57] Four treatment guidelines for focal HH[46,47,58,59] and one algorithm for palmoplantar HH specifically[60] have been proposed (see table V). These guidelines generally agree that the severity of HH, as assessed using the HDSS, should be used in conjunction with the patient’s own wishes and medical characteristics (e.g. co-morbidities) to guide the choice of treatment.[46,47] In general,
<table>
<thead>
<tr>
<th>Type of therapy</th>
<th>Mechanism of action</th>
<th>Type(s) of HH</th>
<th>Advantages and disadvantages</th>
<th>Usage recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminum chloride</td>
<td>Causes physical obstruction of eccrine ducts by combining with intraductal keratin fibres to form a plug</td>
<td>Axillary, palmar, plantar</td>
<td>Usually requires 10–50% aluminum chloride hexahydrate to effectively treat HH[^1]</td>
<td>Initial concentration (in absolute ethanol or salicylic acid gel): axilla: 10–12% (up to 35%); palmar/plantar: 20% (up to 50%); craniofacial: 10% (up to 20%) Technique: apply to dry area at bedtime, wash off after 6–8 h Frequency: three to seven times per wk until euhidrotic Maintenance: every 1–3 wk</td>
</tr>
<tr>
<td>hexahydrate</td>
<td></td>
<td></td>
<td>Skin irritation common at high doses</td>
<td></td>
</tr>
<tr>
<td>astringent agents</td>
<td>Transiently block eccrine pores</td>
<td>Axillary, palmar, plantar</td>
<td>High rates of skin irritation, discoloration, and allergic sensitization leading to contact dermatitis[^18,62,63]</td>
<td>Although some authors have recommended 10% glutaraldehyde solution in water with 1.65% bicarbonate applied twice per wk[^64,65] we do not recommend these agents as a first-line treatment.</td>
</tr>
<tr>
<td>(e.g. formaldehyde)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anticholinergics</td>
<td>Competitively inhibit acetylcholine at the neuroglandular synapses of eccrine glands, thereby interfering with neuroglandular signaling</td>
<td>Craniofacial, axillary, palmar, plantar</td>
<td>Relatively low efficacy, poor absorption, and cutaneous and systemic adverse effects[^18,60-69]</td>
<td>Topical glycopyrrolate (0.5–4% cream, aqueous solution or pads) is primarily indicated for craniofacial HH[^70,71] and various types of gustatory sweating (Frey syndrome[^72] diabetic[^73,74] and compensatory[^75])</td>
</tr>
<tr>
<td>(e.g. glycopyrrolate)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anesthetics</td>
<td>Presumably block sympathetic nerve fibers that supply eccrine glands</td>
<td>Axillary, palmar, plantar</td>
<td>Impractical due to low efficacy and short duration of effect[^18,76]</td>
<td>Not recommended</td>
</tr>
<tr>
<td>(e.g. lidocaine [lignocaine], prilocaine)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iontophoresis</td>
<td>Uses electrical current to enhance percutaneous absorption of ions, leading to either obstruction of distal eccrine ducts or functional disruption of eccrine gland secretion</td>
<td>Axillary, palmar, plantar</td>
<td>Most commonly uses tap water, but anticholinergics may also be added (increased efficacy but more frequent systemic adverse effects, e.g. dry or sore mouth and throat[^77,78]) Skin irritation, dryness, and peeling at treatment site (especially axillae[^79,80]) Very time consuming[^81]</td>
<td>Technique: direct current 10–20 mA for 20–30 min per session (switch current direction midway during each session) Frequency: every other day until euhidrotic (usually six to ten sessions) Maintenance: every 1–4 wk</td>
</tr>
</tbody>
</table>

[^1]: Evidence level: I, A
[^2]: Evidence level: II, A
[^3]: Evidence level: III, A

Continued next page
conservative approaches such as topical therapies should be attempted before surgical options, even in cases of severe HH. If monotherapy is insufficient, the combination of topical with other conservative therapies is encouraged prior to considering surgical interventions. Recommendations for combining treatment modalities are currently based solely on expert consensus, as no research to date has examined the efficacy of combination therapy versus monotherapy. Surgical treatments should be reserved for those individuals with HDSS scores of 3 or 4 who do not respond to repeated trials of conservative mono- or combination therapy and whose type of focal HH is amenable to surgical intervention.

6.1 Botulinum Toxin

BTX, which is produced by the anaerobic bacillus Clostridium botulinum, is a potent neurotoxin that inhibits the presynaptic release of acetylcholine and binds to acetylcholine receptors at the postsynaptic membrane. When the toxin is applied using multiple injections to the affected hyperhidrotic area, it causes a localized, long-lasting yet reversible reduction in cholinergic transmission. Because eccrine glands are innervated by postganglionic sympathetic cholinergic fibers, they are effective targets for BTX. Given that the pathophysiology of focal HH likely involves neurogenic hyperactivity rather than structural abnormalities in eccrine glands, a localized neuroglandular intervention seems ideal for the treatment of focal HH.

Of the seven different BTX serotypes that have been identified, BTX-A appears to be the most potent. BTX-A is available in the US as Botox® (Allergan Inc., Irvine, CA, USA) and in Europe as both Botox® and Dysport® (Speywood Pharmaceuticals Inc., Maidenhead, UK). The two formulations do not differ significantly in their efficacy or duration of effect, but Dysport® may be associated with more adverse effects when used for palmar HH. One unit of Botox® is approximately equal to 3–4 units of Dysport®. Botox® has been approved by the US FDA and Canada’s Health Protection Branch for the treatment of axillary HH, glabellar lines (cosmetic), and several conditions of spasticity or spasm, such as blepharospasm, strabismus, and cervical dystonia. It has also been used off-label to successfully treat other facial wrinkles, migraine headaches, and other spasticity and tremor disorders.

Since intradermal injections of BTX-A were first shown to be efficacious for the management of axillary HH in 1996, numerous studies have supported the safety and efficacy of this treatment for axillary, palmar, plantar, and craniofacial HH. Most importantly, BTX can considerably improve QOL in severely affected patients. Currently, Botox® is the only BTX-A formulation approved in Canada and the US for the
Table IV. Surgical treatment options for primary focal hyperhidrosis (HH)

<table>
<thead>
<tr>
<th>Type of therapy</th>
<th>Mechanism of action</th>
<th>Type(s) of HH</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue excision</td>
<td>Excision of subcutaneous axillary sweat glands with or without overlying skin</td>
<td>Axillary</td>
<td>Usually permanent and relatively effective (50–90%[90]) High rates of complications (e.g. infection, bleeding, delayed healing, flap necrosis, hypertrophic and constrictive scarring)[90-101]</td>
</tr>
<tr>
<td>Minimally invasive surgery (curettage, liposuction, or combined suction-curettage)</td>
<td>Successful due to either removal or destruction of sweat glands or disruption of the neurovascular supply to these glands</td>
<td>Axillary</td>
<td>Higher efficacy (usually >90%) and fewer complications than excision[102-106] Minor complications (e.g. infection, superficial skin erosions, paresthesiae, ecchymoses, hematomas, seromas, fibrotic bands, skin retractions)[107,108] High recurrence rate (up to 23.8% by 6 mo)[107,109-111]</td>
</tr>
<tr>
<td>Endoscopic thoracic sympathectomy</td>
<td>Destroys T2 and/or T3 sympathetic ganglia via excision, radiofrequency, or electrocautery ablation,[112,113] or ganglion clamping[112,114]</td>
<td>Palmar, facial, axillary</td>
<td>Satisfactory control of sweating in up to 98%,[115] 83%,[116] and 63%[115] of patients with palmar, facial, and isolated axillary HH, respectively Moderate risk of recurrence (up to 8.8%)[117] Compensatory HH in 52.3%: subjective and objectively measurable increases in sweating in areas other than those made dry by sympathectomy[118] Compensatory HH begins 2–8 wk following endoscopic thoracic sympathectomy, may progress, and does not improve over time; it most commonly affects the back, chest, abdomen, and lower limbs High rate of patient dissatisfaction (up to 11.5%),[117] most commonly due to compensatory HH[119-121] Other complications include excessively dry hands, gustatory sweating, phantom sweating, Horner syndrome, neuropathic complications, and perioperative complications (e.g. pneumothorax, cardiac arrest)</td>
</tr>
</tbody>
</table>

Treatment of axillary HH.[128] However, data demonstrating the efficacy of both Dysport®,[125,129] and BTX-B (Myobloc®, Elan Pharmaceuticals, South San Francisco, CA, USA)[130-134] suggest that these may also be effective agents for this disorder.

Currently, BTX-A is delivered exclusively via intradermal injections for the treatment of focal HH. Although not extensively studied, potential future delivery options for BTX-A include topical administration[135,136] and iontophoresis.[137]

6.1.1 Axillary HH

The efficacy of BTX for the treatment of axillary HH has been evaluated in more than 20 prospective, observational, or placebo-controlled studies,[25,27,31-33,50,56,84-88,127,138-147] three of which were large, double-blind, placebo-controlled trials.[32,56,85] Across these studies, the duration of anhidrosis in the axillae usually ranged from 4 to 10 months, with some studies showing that treatment remains effective for up to 14 months.[25,84,86] Repeated BTX-A injections yield a similar duration of symptom relief, suggesting that patients do not develop treatment resistance.[31,56] Anhidrosis usually begins within 7–10 days following BTX-A injections. The reduction in sweating symptoms is accompanied by dramatic improvements in several QOL measures, including general QOL, emotional status, ability to participate in daily and social activities, occupational productivity, and time spent treating HH symptoms.[27,32,33,50,127] Patients are extremely satisfied with the results of BTX-A treatment, with up to 98% willing to recommend the therapy to other individuals with axillary HH.[85]

Adverse Events

Adverse effects associated with BTX-A treatment for axillary HH are minor. In one study,[56] 5% of patients treated with BTX-A perceived compensatory increases in sweating in non-axillary regions, although this increase was not measured quantitatively, nor was it reported in other studies. Pain associated with intradermal injections of BTX is usually minimal in the axillae. Both skin and air cooling have nevertheless been effective in reducing injection-related pain when it does occur.[148] Subcutaneous injections may also be less painful than dermal injections while maintaining a similar level of efficacy.[149]
<table>
<thead>
<tr>
<th>Location</th>
<th>Severity</th>
<th>First line</th>
<th>Second line</th>
<th>Third line</th>
<th>Fourth line</th>
<th>Fifth line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axillary</td>
<td>Mild</td>
<td>Topical ACH (10–35%)</td>
<td>BTX-A (50–100 U/axilla)</td>
<td>Local surgery</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Moderate/severe</td>
<td>Topical ACH (10–35%) or BTX-A (50–100 U/axilla)</td>
<td>Topical ACH and BTX-A (adjunct or alternative)</td>
<td>Local surgery</td>
<td>ETS</td>
<td>N/A</td>
</tr>
<tr>
<td>Palmar</td>
<td>Mild</td>
<td>Topical ACH (10–50%)</td>
<td>Iontophoresis or BTX-A (100–150 U/palm)</td>
<td>Topical ACH and (iontophoresis or BTX-A)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Moderate/severe</td>
<td>Topical ACH (10–50%) or Iontophoresis or BTX-A (100–150 U/palm)</td>
<td>± Oral anticholinergic (adjunct or alternative)</td>
<td>ETS</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Plantar</td>
<td>Mild</td>
<td>Topical ACH (20–50%)</td>
<td>BTX-A (150–200 U/sole)</td>
<td>Topical ACH and (iontophoresis or BTX-A)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Moderate/severe</td>
<td>Topical ACH (20–50%) or Iontophoresis or BTX-A (150–200 U/sole)</td>
<td>± Oral anticholinergic (adjunct or alternative)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Craniofacial</td>
<td>Any severity</td>
<td>Topical ACH (10–20%) or BTX-A (up to 100 U) or oral anticholinergic</td>
<td>ETS (HDSS 3–4 only)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

a See table III for usage recommendations for conservative therapies.

b If treatment failure occurs (i.e. no change in the HDSS score after 1 mo of therapy) in the absence of intolerability to the treatment, the therapy may be repeated once (in the case of BTX-A) or another therapy in a given column may be attempted before moving across columns.

c Severity is determined using HDSS scores: mild (HDSS 1–2) or moderate/severe (HDSS 3–4).

ACH = aluminum chloride hexahydrate; BTX-A = botulinum toxin type A injections; ETS = endoscopic thoracic sympathectomy; HDSS = Hyperhidrosis Disease Severity Scale; N/A = not applicable.
6.1.2 Palmar HH

The beneficial effect of BTX-A on palmar HH has been demonstrated in numerous open-label studies and case reports,[26,86-93,150-154] and in one small single-blind[94] and two small, double-blind, placebo-controlled trials.[95,98] Efficacy, measured both quantitatively and subjectively, was around 80–90% in most of these studies. The duration of anhidrosis is shorter than in axillary HH, lasting approximately 6 months, and ranging from 4 to 12 months.[86-95] Response rates also vary more than in the treatment of axillary HH.[155]

Adverse Events

Transient weakness of the intrinsic hand muscles is the most noteworthy adverse event when using BTX for palmar HH.[87-90,93-95,151,152,156] The weakness usually begins after 1–3 days and resolves within 10–14 days.[94] In one Botox® study, subjective hand weakness occurred in 45–77% of treated patients, with higher rates occurring when higher dosages were used.[94] Quantitatively measured handgrip strength is generally normal in most patients, yet finger pinch strength is often reduced. If injections are meticulously placed high into the dermis, deep penetration of BTX-A to a point where it affects intrinsic muscle function may be prevented.[98] Given the high incidence of transient weakness of the intrinsic hand muscles following BTX treatment, clinicians should counsel patients regarding the potential consequences and dangers of poor fine motor control.

Intense pain and soreness are also experienced during the procedure and for up to 1–2 days thereafter due to the multiple injections into the palm, making this treatment difficult to tolerate.[94,157] Proper anesthesia is thus crucial to ensure patient compliance. Attempts to reduce injection-related pain have included topical anesthetics (e.g. lidocaine [lignocaine][155] or tetracaine[158]); cryoanesthesia with ice,[159] cold air,[148] or dichlorotetrafluoroethane,[160,161] regional nerve blocks,[162-165] intravenous regional anesthesia (IVRA; Bier’s block);[166,167] needle-free injection (e.g. MED-JET®)[157,168] and vibration anesthesia.[161,159,169] Patients should be counseled on the potential adverse effects of anesthesia, such as vascular puncture, impaired hand dexterity, and neuropathies from repeated nerve injuries.[162,163] The present authors currently employ topical ice cubes (i.e. cryoanesthesia), as described by Smith et al.,[159] as first-line anesthesia, with vibration and regional (wrist block) anesthesia as second- and third-line options, respectively.

Additional adverse events during BTX-A treatment for palmar HH include mild numbness, paresthesias, and small hematomas at the injection site. These adverse events are mild, transient, and uncommon, occurring in less than 10% of treated patients.[95,98]

Dosing

The doses required to effectively treat palmar symptoms tend to be higher than for axillary HH, often ranging from 100 to 240 U of Botox®.[26,87,89,90,150,152,153,156] However, in one randomized, single-blind trial comparing 50 U with 100 U BTX-A per hand the investigators found similar efficacy for both dosages, with only a trend toward higher patient satisfaction in the 100-U dose group.[94] The higher dose of Botox® was nevertheless associated with an increased incidence of subjective hand weakness and reduced finger pinch strength compared with the lower dose. It may thus be prudent to initiate treatment with 50 U BTX-A per hand, even though recent treatment guidelines suggest using at least 100 U.[47] Doses should be tailored to the size of the palm, with injections of approximately 2–3 U of Botox® spaced every 1–2 cm (see figure 2).

6.1.3 Plantar HH

Few studies have examined BTX treatment for plantar HH, as the thickened stratum corneum on the soles of feet makes intra-dermal injections more challenging.[46] Injections are also quite painful because of the dense innervation of the area. Most

![Fig. 2. Map for placing botulinum toxin type A injections into the palm for palmar hyperhidrosis. Injections should be placed every 1–2 cm.](image-url)
patients therefore require an ankle block prior to receiving injections.[163] Use of the Dermojet® to inject the soles with BTX-A may also decrease injection-related pain but may be less effective than intradermal injections.[170,171]

Uncontrolled studies have found that BTX-A treatment of planter HH may be as effective as for palmar HH, requiring similar dosages and yielding approximately 6 months of symptom relief and improved QOL.[86,170-173] Adverse effects include both pain and hematomas at injection sites.[86,170] In the authors' experience, treatment efficacy is much lower than for the palms or axillae, and up to 50% of patients are unsatisfied with treatment. In addition, higher doses of 200 U or more of BTX-A per sole may be needed. However, we have noted that up to 40% of patients who are treated with BTX-A for palmar HH alone have reported improvement in their planter HH.

6.1.4 Craniofacial HH

BTX-A has been successful in the treatment of frontal or forehead HH, effecting a reduction in sweating of approximately 75% that is maintained for at least 5 months.[86,96,174] Injections are usually made in a band near the hairline. Mild weakness of the frontalis muscle appears to be the only adverse effect, lasting 1–12 weeks and sometimes resulting in a mild brow ptosis.[96,97]

6.1.5 Other Types of Focal HH

BTX-A has also been used in the treatment of several other focal HH conditions, including HH of the anal fold and inguinal region.[175,176] In addition, BTX-A may be effective in treating the focal HH associated with chronic anal fissures.[177]

6.1.6 General Considerations

Although BTX-A treatment has been investigated for nearly all types of focal HH, it is currently only FDA approved for the treatment of axillary HH. Clinicians should keep in mind that treatment of palmar plantar and craniofacial HH using BTX-A is considered off-label. Clinicians should also be aware of the absolute and relative contraindications to BTX-A treatment (see table VI).[178] There is a risk that BTX-A could unmask or exacerbate neuromuscular disease (e.g. myasthenia gravis,[179,180] Lambert-Eaton syndrome[181]), but this risk remains low, and patients with neuromuscular disease have been treated safely with BTX-A (e.g. for cervical dystonia).[182,183] Although pregnancy and active nursing are considered absolute contraindications to BTX-A (pregnancy category C), pregnant and nursing women have been inadvertently treated with BTX-A without ill effects.[126,184] However, no studies have been specifically designed to demonstrate the safety of BTX-A in this population, nor in individuals of either sex aged ≥65 years. It is thus advisable to postpone elective BTX-A treatment in pregnant or nursing patients; in contrast, those aged ≥65 years are treated routinely without increased concern.

Despite the high efficacy and safety rates reported for BTX-A in the management of nearly all types of focal HH, the treatment may be costly. However, patients with third-party health insurance will typically receive coverage for this approved medication in the indicated settings. Beyond the cost of the medication, most physicians charge injection fees that may range in the hundreds to over $US1000.[185] Since BTX-A does not produce a permanent resolution of sweating symptoms, most patients require such costly repeated injections up to twice per year.

7. Botulinum Toxin Injection Tips

7.1 Minor's Iodine-Starch Test

The Minor's iodine-starch test is useful for estimating the specific areas of involvement that require treatment. In addition, it provides a qualitative means of assessing treatment response. To ensure accurate results, patients should discontinue any topical therapies (e.g. antiperspirants) 5 days prior to iodine-starch testing. In addition, iodine-starch testing should be performed prior to the application of topical anesthetics or regional nerve blocks. During the test, affected areas are first wiped with a brown-orange iodine tincture that is allowed to dry for several seconds (figure 1). The skin is then sprinkled with a starch, such as cornstarch powder. A colorimetric reaction occurs between the iodine-starch combination and eccrine sweat, resulting in a bluish-purple discoloration. This color denotes the area of excess sweating, which can subsequently be outlined with a marking pen.
prior to initiating treatment. It is important to mark the area of sweating before applying ice packs, as the condensation may falsely enlarge the area. Photographs of the distribution of sweating can be taken to track the patient’s response to treatment (figure 1).

7.2 Anesthesia

Both facial and axillary skin can be easily and painlessly injected using a 30-gauge needle without the need for anesthesia. Cryoanalgesia using ice packs may nevertheless be used to minimize any discomfort both before and after axillary or facial injections.\[148\] Because of the sensitivity of the palms and soles, patients with palmar or plantar HH may require regional nerve block anesthesia (i.e. wrist or ankle blocks) prior to injections. Ice cube anesthesia has proven to be of significant value in facilitating palmoplantar injections and is our current method of choice.\[159\] Typically, an ice cube wrapped in gauze is used to pre-cool the site of injection for about 5–10 seconds. The ice cube then precedes the injection path, thus providing time for injection while the next site is being partially anesthetized. Topical anesthesia with creams alone is rarely sufficient to reduce discomfort.\[155,166\] Small (30-gauge) needles can be used to inject 2% plain lidocaine to block the median, ulnar, and radial nerves (for a wrist block\[160\]) or the tibial and sural nerves (for an ankle block\[162\]). Care should be taken to keep the injection pressure slow and steady. Approximately 15–30 minutes should be allowed to pass prior to initiating Botox® injections. Regional nerve blocks are associated with a small but significant rate of complications that include vascular puncture, impaired hand dexterity, and neuropathies from repeated nerve injuries.\[162,163\] Wrist blocks may also lead to a reactive hyperemia that increases the tendency of bleeding from the injection site, thereby leading to loss of material from the site and a subsequent reduction in the relative effectiveness of each injection.\[155\] Finally, regional nerve blocks result in anesthesia that may last several hours after the procedure. Patients should therefore consider bringing along a friend or relative who can drive them home safely following the treatment.

7.2.1 Alternatives and Adjuncts

IVRA (Bier’s block)\[166,167\] and vibration anesthesia\[41,159,169\] are relatively effective alternatives and adjuncts, respectively, to regional nerve blocks. Use of IVRA, however, requires considerable expertise as well as cardiac monitoring during the procedure because of the risk of cardiovascular and CNS toxicity.\[166\] Vibration anesthesia involves the application of a vibrating wand (e.g. AcuVibe\[24\]) to the skin immediately adjacent to the injection site. This technique may be used as an adjunct to regional nerve blocks if patients continue to experience discomfort following the block.\[41\] Needle-free injection (e.g. using the MED-JET®) may be less effective than needle injections and may lead to bruising and crusting that can persist for weeks.\[41,157,168\]

7.3 Dilution and Injection

7.3.1 General Instructions

There is no standardized dosing and injection technique for the treatment of focal HH using Botox®. One vial of 100 U Botox® is generally diluted using 2–5 mL of 0.9% saline.\[155\] Although the product monograph recommends use of non-preserved saline, published reports demonstrate significantly less pain and no change in efficacy with preserved saline.\[187,188\] The precise dilution used depends on the preference of the practitioner and the number of units to be injected.

Murray et al.\[41\] recommend using a dilution of 3 mL per 100 U of Botox®. The contents of the vial are divided into syringes, the type and number of which depend on the area treated. For axillary HH, one 3-mL Luer-Lock® syringe (containing 100 U of Botox® diluted in 3 mL of saline) fitted with a 30-gauge needle can be used for one or both axillae, depending on the total dose required. For palmar and plantar HH, the thick skin prevents easy injection into the dermis, resulting in quicker dulling of the needles. In these cases, a 3-mL dilution should be used, with the drug being drawn up into six 0.5-mL syringes (Ultra-Fine II 30-gauge hubless insulin needle-syringe). This dilution provides 3.3 U of Botox® per 0.1-mL injection.

To prevent unnecessary dulling of the syringes, the lid and rubber stopper on the Botox® vial should be removed using a bottle opener following saline reconstitution so that the Botox® can be drawn up with the needle inside the bottle. Generally, 0.05–0.1 mL aliquots (1.7–3.3 U) of Botox® are injected intradermally in locations spaced 1–2 cm apart within the hyperhidrotic regions.\[41,155,189\] Injections into the thick palmar and plantar skin produce a smaller zone of radial diffusion than injections into axillary and facial skin. Accordingly, injections should be placed slightly closer together for the palms and soles (1–1.5 cm) and slightly further apart for the axillae and face (1.5–2 cm). The surface area of the hyperhidrotic region should guide the total dose and number of injections.\[84\]

Botox® has a tendency to backflow from the injection tract following injection. To minimize backflow, several recommendations may be followed: (i) keep the needle bevel up; (ii) angle the needle more parallel to the skin surface; (iii) advance the needle 2 mm prior to injection; (iv) insert the needle slowly and without pressure on the plunger; (v) and wait 1–2 seconds following injection to allow time for diffusion and normalization of pressure.\[41,155\] This injection technique applies to treatment of all areas, but is particularly important for palmar and plantar injections.
7.3.2 Axillary HH

Axillary injections may be placed into the superficial fat without sacrificing efficacy or increasing the incidence of adverse events. Such subcutaneous injections are less painful than the intradermal injections typically used. The appearance of a wheal following injection indicates that injections were placed at a proper depth. Injection patterns may be radial (beginning at the periphery of hair-bearing skin and spiralling towards the center of the axillary vault, or vice versa),[41,155] guided by a grid,[190] or random. Depending on the surface area of the hyperhidrotic region, 50–100 U of Botox® in 10–20 intradermal injections of 0.1–0.2 mL aliquots should be used for each axilla.[46] Studies examining BTX-A therapy specifically for axillary HH have used varying doses, typically ranging between 50 and 100 U of Botox® per axilla. Although two uncontrolled, non-comparative studies of high-dose BTX-A (200 U of Botox® in each axilla) described efficacy for as long as 29 months,[140,191] most other studies suggest little significant improvement with dosing >50 U per axilla.[56,85,144-146] One large randomized, double-blind, placebo-controlled, multicenter trial comparing 50 U and 75 U Botox® with placebo found no significant difference in the efficacy or duration of action with the higher Botox® dosage, and both doses were significantly better than placebo.[145] One report incorporated the use of hyaluronidase to facilitate spread and lower the overall dose of BTX-A used.[192]

Patients with axillary HH generally require injections every 6–12 months to maintain control of their sweating.[25,84-86,155]

7.3.3 Palmar and Plantar HH

Figure 2 portrays a typical injection pattern for the palms. The proper depth of injection for the palms and soles is at the junction of the dermis and subcutaneous tissue, where eccrine glands are located. Approximately 40–50 injections of 0.05–0.1 mL aliquots (1.7–3.3 U) spaced 1–1.5 cm apart should be used for each palm or sole, for a total dose of approximately 100 U of Botox®, depending on the surface area.[46,189]

The needle should be at an oblique angle, as perpendicular injections can result in significant backflow from the injection tract. Care should be taken to inject into the deep dermis, since subcutaneous injections increase the probability that the drug will diffuse into the intrinsic muscles of the hand, resulting in hand weakness. Many patients will experience some degree of hand weakness that begins 1–3 days after treatment and persists for approximately 2 weeks following treatment.[94,156] For dentists, surgeons, musicians, and other professionals who rely on the use of their hands, two options exist to minimize the impact of hand weakness on daily functioning. First, treatment may be staggered, such that each hand is treated on separate visits, with touch-up injections in the other hand, if necessary. Alternatively, treatment may be initiated at a low dose in both hands simultaneously during the first visit. Patients should be given a choice regarding which treatment schedule they prefer after being informed about the implications associated with the available options.

The wheals produced when injecting axillary skin are not commonly found following palmar or plantar injections because of the relative stiffness of palmar plantar skin. Injections at the proper depth may nevertheless produce a small zone of visible blanching that indicates deposition of the material in the deep dermis.[155] The same technique for injections of the soles can be used, although the larger surface area may demand a greater total dose of Botox®.

Patients with palmar or plantar HH require injections every 6 months, on average, to achieve acceptable symptomatic relief.[86,170-173]

7.3.4 Craniofacial HH

Craniofacial HH can be treated with injections of 2–4 U of Botox® spaced every 2 cm in three horizontal rows: along the upper third of the forehead skin, along the anterior hairline, and 2 cm behind the anterior hairline.[155] Patients with craniofacial HH typically require injections every 5–6 months to maintain acceptable levels of sweating.[88,96,174]

8. Conclusion

Primary focal HH is a common disorder that results in considerable functional and psychosocial impairment. Patients experience symptoms for many years before presenting to their physicians.

Multiple treatment modalities currently exist, but their efficacy depends, in part, on the body area affected, the severity of the sweating, and the patient's own tolerance of and response to previous treatments. Healthcare professionals should be aware of the risks, benefits, cost, and reasonable expectations associated with the available treatment modalities. Conservative measures should generally be attempted before more invasive and irreversible options, even in patients with severe symptoms. BTX-A, although expensive, provides excellent results in safely achieving anhidrosis and improving patients' QOL for a relatively long duration. Along with aluminum chloride hexahydrate, BTX-A may be considered a first-line therapy for moderate-to-severe axillary HH, and in some cases also for excessive sweating affecting other body areas.

Although general management guidelines and algorithms for primary focal HH exist, healthcare professionals should make an attempt to tailor treatment options to each patient individually, taking risks, benefits, cost, and convenience into account.
Acknowledgments

No sources of funding were used to assist in the preparation of this review. Nowell Solish has received honoraria from Allergan for speaking on the use of botulinum toxin for hyperhidrosis. The other authors have no conflicts of interest that are directly relevant to the content of this review.

References

Correspondence: Christian A. Murray, Division of Dermatology, University of Toronto, Women's College Hospital, 76 Grenville Street, Room 842, Toronto, ON, Canada M5S 1B2.